Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
Blood ; 139(5): 678-685, 2022 02 03.
Article in English | MEDLINE | ID: covidwho-1551192

ABSTRACT

Patients with chronic lymphocytic leukemia (CLL) have an impaired antibody response to coronavirus disease 2019 (COVID-19) vaccination. Here, we evaluated the antibody response to a third BNT162b2 mRNA vaccine in patients with CLL/small lymphocytic lymphoma (SLL) who failed to achieve a humoral response after standard 2-dose vaccination regimen. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies were measured 3 weeks after administration of the third dose. In 172 patients with CLL, the antibody response rate was 23.8%. Response rate among actively treated patients (12.0%; n = 12/100) was lower compared with treatment-naïve patients (40.0%; n = 16/40; OR = 4.9, 95% CI 1.9-12.9; P < .001) and patients off-therapy (40.6%; n = 13/32; OR = 5.0, 95% CI 1.8-14.1; P < .001), (P < .001). In patients actively treated with Bruton's tyrosine kinase (BTK) inhibitors or venetoclax ± anti-CD20 antibody, response rates were extremely low (15.3%, n = 9/59, and 7.7%, n = 3/39, respectively). Only 1 of the 28 patients (3.6%) treated with anti-CD20 antibodies <12 months prior to vaccination responded. In a multivariate analysis, the independent variables that were associated with response included lack of active therapy (OR = 5.6, 95% CI 2.3-13.8; P < .001) and serum immunoglobulin A levels ≥80 mg/dL (OR = 5.8, 95% CI 2.1-15.9; P < .001). In patients with CLL/SLL who failed to achieve a humoral response after standard 2-dose BNT162b2 mRNA vaccination regimen, close to a quarter responded to the third dose of vaccine. The antibody response rates were lower during active treatment and in patients with a recent exposure (<12 months prior to vaccination) to anti-CD20 therapy. This trial was registered at www.clinicaltrials.gov as #NCT04862806.


Subject(s)
BNT162 Vaccine/therapeutic use , COVID-19/prevention & control , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , Antibody Formation , BNT162 Vaccine/administration & dosage , COVID-19/blood , COVID-19/immunology , Female , Humans , Immunity, Humoral , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Male , Middle Aged , SARS-CoV-2/immunology , Vaccine Efficacy
4.
Blood Cancer J ; 11(7): 136, 2021 07 30.
Article in English | MEDLINE | ID: covidwho-1333907

ABSTRACT

B-cell chronic lymphocytic leukaemia (CLL) is associated with immunosuppression and patients are at increased clinical risk following SARS-CoV-2 infection. Covid-19 vaccines offer the potential for protection against severe infection but relatively little is known regarding the profile of the antibody response following first or second vaccination. We studied spike-specific antibody responses following first and/or second Covid-19 vaccination in 299 patients with CLL compared with healthy donors. 286 patients underwent extended interval (10-12 week) vaccination. 154 patients received the BNT162b2 mRNA vaccine and 145 patients received ChAdOx1. Blood samples were taken either by venepuncture or as dried blood spots on filter paper. Spike-specific antibody responses were detectable in 34% of patients with CLL after one vaccine (n = 267) compared to 94% in healthy donors with antibody titres 104-fold lower in the patient group. Antibody responses increased to 75% after second vaccine (n = 55), compared to 100% in healthy donors, although titres remained lower. Multivariate analysis showed that current treatment with BTK inhibitors or IgA deficiency were independently associated with failure to generate an antibody response after the second vaccine. This work supports the need for optimisation of vaccination strategy in patients with CLL including the potential utility of booster vaccines.


Subject(s)
Antibodies, Viral , Antibody Formation/drug effects , COVID-19 Vaccines , COVID-19 , Immunization, Secondary , Leukemia, Lymphocytic, Chronic, B-Cell , Adult , Aged , Aged, 80 and over , Antibodies, Viral/blood , Antibodies, Viral/immunology , BNT162 Vaccine , COVID-19/blood , COVID-19/immunology , COVID-19/prevention & control , COVID-19 Vaccines/administration & dosage , COVID-19 Vaccines/immunology , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , Male , Middle Aged
6.
Cell ; 183(7): 1901-1912.e9, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-950119

ABSTRACT

Long-term severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) shedding was observed from the upper respiratory tract of a female immunocompromised individual with chronic lymphocytic leukemia and acquired hypogammaglobulinemia. Shedding of infectious SARS-CoV-2 was observed up to 70 days, and of genomic and subgenomic RNA up to 105 days, after initial diagnosis. The infection was not cleared after the first treatment with convalescent plasma, suggesting a limited effect on SARS-CoV-2 in the upper respiratory tract of this individual. Several weeks after a second convalescent plasma transfusion, SARS-CoV-2 RNA was no longer detected. We observed marked within-host genomic evolution of SARS-CoV-2 with continuous turnover of dominant viral variants. However, replication kinetics in Vero E6 cells and primary human alveolar epithelial tissues were not affected. Our data indicate that certain immunocompromised individuals may shed infectious virus longer than previously recognized. Detection of subgenomic RNA is recommended in persistently SARS-CoV-2-positive individuals as a proxy for shedding of infectious virus.


Subject(s)
COVID-19/immunology , Common Variable Immunodeficiency/immunology , Leukemia, Lymphocytic, Chronic, B-Cell/immunology , SARS-CoV-2/isolation & purification , Aged , Antibodies, Viral/blood , Antibodies, Viral/immunology , COVID-19/complications , COVID-19/virology , Common Variable Immunodeficiency/blood , Common Variable Immunodeficiency/complications , Common Variable Immunodeficiency/virology , Female , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/blood , Leukemia, Lymphocytic, Chronic, B-Cell/complications , Leukemia, Lymphocytic, Chronic, B-Cell/virology , Respiratory Tract Infections/blood , Respiratory Tract Infections/complications , Respiratory Tract Infections/immunology , Respiratory Tract Infections/virology , SARS-CoV-2/immunology , SARS-CoV-2/pathogenicity
SELECTION OF CITATIONS
SEARCH DETAIL